您现在的位置: 发奋学习网学习频道教学设计数学教学设计八年级数学教学设计新人教版八年级数学下册《平行四边形的判定—三角形的中位线》教案

新人教版八年级数学下册《平行四边形的判定—三角形的中位线》教案

发奋学习网| http://www.ff70.com |八年级数学教学设计|人气:701次| 03-01
新人教版八年级数学下册《平行四边形的判定—三角形的中位线》教案

四、课堂引入
1.欣赏图片、提出问题.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1   两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2   对角线互相平分的四边形是平行四边形。

五、例习题分析
例1(教材P96例3)已知:如图 ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.
(证明过程参看教材)
问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.

例2(补充) 已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.
求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;
(2) △ABC的顶点分别是△B′C′A′各边的中点.
证明:(1)  ∵  A′B′∥BA,C′B′∥BC,
∴  四边形ABCB′是平行四边形.
∴ ∠ABC=∠B′(平行四边形的对角相等).
同理∠CAB=∠A′,∠BCA=∠C′.
(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.
∴  AB=B′C, AB=A′C(平行四边形的对边相等).
∴  B′C=A′C.
同理  B′A=C′A, A′B=C′B.
∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.
    例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.
点击下载此文件



如果觉得《新人教版八年级数学下册《平行四边形的判定—三角形的中位线》教案》不错,可以推荐给好友哦。
本文Tags: 教学设计 - 数学教学设计 - 八年级数学教学设计,八年级数学教学设计案例,初中数学教学设计,平行四边形 三角形 数学
Copyright © 学习资源下载. All Rights Reserved .
本页提供新人教版八年级数学下册《平行四边形的判定—三角形的中位线》教案,八年级数学教学设计,八年级数学教学设计案例,初中数学教学设计参考。
1 2 3 4 5 6 7 8 9 10 11 12